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ABSTRACT

Human annotations are noisy and prone to influence from several factors including personal bias, task
ambiguity, environmental distractions, health state, and more. These annotations, however, are of
integral value in human behavior studies, and in design and evaluation of machine learning applica-
tions, especially those involving hidden mental states that cannot effectively be measured or assessed
by other means. We propose a novel method for extending continuous real-time annotation fusion
approaches to generate accurate ground truth estimates. We validate our approach in a mechani-
cally simple but perceptually demanding psychophysical annotation experiment where an objective
truth is known. Our method yields a ground truth in better agreement with the objective truth than
state-of-the-art approaches and can be used to provide a more accurate fused annotation for real data.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Automated human behavior estimation and prediction prob-
lems for hidden state constructs such as emotional state, en-
gagement, productivity, or attention are notoriously difficult and
typically approached using supervised machine learning. For
these types of problems, self or expert annotations are often
used to provide ratings for the target construct and establish a
ground truth set of labels for machine learning. However, the
human annotation process is noisy and produces several types
of label artifacts due to many factors such as perception bias, in-
terpretation ambiguity, and distractions, to name a few. The im-
pact of these biases and cognitive effects on the annotations are
magnified when the annotation task demands careful attention
or vigilance over long sessions. A time-economical annotation

protocol is therefore paramount in order to obtain labels of the

target construct that are consistent and congruent. The usual
strategy for combating these error sources involves gathering
multiple annotations from different sources and fusing them to
obtain a single ground truth. Aggregation of multiple anno-
tations helps mitigate the effect of noise and a careful fusion
method ideally suppresses individual biases and artifacts, but

there is yet no consensus on a best-practice fusion approach.

In this work, we focus on a continuous-scale annotation
scheme where expert annotators observe recordings of an ex-
periment session and annotate the target construct in real-time.
This annotation scheme has been used for mental constructs
that evolve steadily over time like affective dimensions (arousal,
valence, dominance) (McKeown et al., 2012; Metallinou et al.,
2013} Metallinou and Narayanan, 2013} Ringeval et al., 2013;

Valstar et al., [2016)), and could be used for other mental states



such as engagement, attention, productivity, or more generally
whenever self-reports disrupt the natural flow of the target con-
struct or introduce retroactive bias. Continuous-scale real-time
annotation affords extra freedom to the experts for subtle dis-
tinctions to be made while taking the full temporal context into
account, but also is subject to further sources of noise and arti-

facts.

Prior work on continuous annotation has focused on ground
truth estimation by modeling and removing general sources of
lag, noise, and/or artifacts. One approach from|Mariooryad and
Busso| (2015) finds an optimal time shift for separate annota-
tions to align them before fusion via per-frame averaging. This
method corrects for variance in annotators’ response times, but
may perform poorly with adversarial annotations or changes in
reaction lag over time (e.g. long annotation tasks). Dynamic
time warping (Miiller, 2007) is a well-known alignment solu-
tion that maximizes the agreement between annotators by han-
dling variance in individual annotators’ lag times, but also only
corrects for temporal misalignments during fusion. Long short-
term memory networks (LSTMs) have also been proposed re-
cently that correct for asynchronous annotator lag when fusing
annotations using additional contextual information (Ringeval
et al., |2015). This approach seems to elegantly handle lag dif-
ferences between annotators when fusing, but has only been
shown to achieve good objective truth approximations when the
contextual representation is appreciably informative of the un-

derlying construct.

Furthermore, canonical correlation analysis (CCA)

(Hotelling}, |1936) and correlated spaces regression (CSR)
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(Nicolaou et al) [2013) focus on correcting systemic and
consistent personal annotation biases by learning a projection
function for a set of features that maximizes the projected
features’ correlation with the set of annotations. These two
approaches correct for spatial annotation biases and require
a separate set of features to be extracted from the stimulus
that are in some combination representative of the changes
in annotation signal values. Extensions of this tenet such as
canonical time warping (CTW) (Zhou and Torre, 2009), deep
canonical correlation analysis (DCCA) (Andrew et al., [2013)),
dynamic probabilistic canonical correlation analysis and time
warping (DPCCA/DPCTW) (Nicolaou et al) 2014), deep
canonical time warping (DCTW) (Trigeorgis et al., [2016)), and
generalized canonical time warping (GCTW) (Zhou and De la
Torrel 2016) have also been studied and shown to perform
well on various data sets. With the right set of features these
methods can produce desirable fusions but often in human
behavior studies these ideal features are as elusive as the
estimation problems for which they are used, especially when
annotation artifacts do not correlate with directly observable

features of the stimulus.

Other methods use a shared latent state to model the ideal
annotation signal and separate distortion states to learn annota-
tors’ biases and artifacts (Audhkhasi and Narayanan, 2013} Zhu
et al.} 2015;|Gupta et al., 2016). For analytical convenience and
to reduce sample complexity, these Bayesian network models
assume exponential family priors for spatial distortion model-
ing, which are not necessarily reflective of the types of errors

expert annotators make. As volunteer-based crowd sourcing



platforms such as Amazon’s Mechanical Turk become more
popular choices for large-scale annotation tasks, it becomes
more difficult to model and fit a family of distortions to each

annotator with confidence.

The fundamental problem confounding annotation fusion
methods to date is the reliance on the average quality of con-
tinuous annotations. Several studies have shown that peo-
ple are better at comparative ranking than absolute rating
(Yannakakis and Hallam| 2011} Metallinou and Narayanan|,
2013; |Yannakakis and Martinez, [2015) suggesting that abso-
lute continuous annotations may not exhibit coherence and self-
consistency. In this paper we affirm this idea by presenting the
results from simple continuous annotation experiments show-
ing high levels of agreement between annotators and a lack
of consistency in labeling over time. We then present a post-
annotation correction method where additional relative rank in-
formation about interval subsets of the fused annotations are
used to warp the result to better approximate the objective
truths. Rather than focusing on evaluating performance in la-
tent state experiments, we validate our approach on experiments
that are reflective of the types of perceptual problems that oc-
cur in hidden state annotation tasks, but where objective truths
are known a priori. We further the utility of our approach by
testing the robustness of our technique to noisy and incomplete
additional information. This method is complementary to other
fusion procedures and can be used to obtain better ground truth

approximations.

2. Experiment

We used a simple but perceptually challenging annotation
task where the objective truth was known for our study. Ten
annotators were asked to separately rate the intensity of the
color green in real-time and on a continuous scale in two videos.
The videos were less than five minutes in length, 864x480 res-
olution, and comprised entirely of solid color frames of green
at varying green channel values in RGB color space. In each
video, the green value was designed to change at different
speeds and times while avoiding discontinuous changes. The
intention was to make the annotation process mechanically easy
with the simple interface provided and to help ensure the main
annotation challenge laid in the translation of green intensity
perception to annotation rating.

The annotation process occurred in real time where annota-
tors adjusted an interface in tandem with perceived changes in
the video. A slider widget representing a float value between
zero (corresponding to black) and one (corresponding to full
green) was displayed and annotators were instructed to watch
the video and use a mouse to move the slider according to how
green the video appeared. No further instructions or clarifica-
tions were given. The value of the slider was recorded for each
video frame at 30Hz, and a picture of the interface is shown in
Figure[]

Figure[2]shows a plot of all ten annotations alongside the ob-
jective truth for both annotation tasks. This plot suggests that
annotators were generally quite good at capturing large changes
and trends, but had difficulties in several areas. First, most an-

notators tended to over-shoot the target value when annotating



Fig. 1. Snapshot of the user interface at different times during the green
channel value annotation task. Annotators only adjusted the slider in sync
with changes in the green video.

increases or decreases in value over a period of time thus sug-
gesting they were fixated on annotating the rate of change rather
than the actual rating. Annotators were sensitive to and cap-
tured the appropriate direction of change, but sometimes were
unable to estimate the correct rate of change. Secondly, we
note that approximately half of the annotators struggled to cap-
ture the lack of change in green value especially during the 100
to 150-second time interval in Figure 2a] One possible expla-
nation is that the longer duration of this constant segment gave
annotators time to realize their current rating did not match their
perception and then adjust the value to match in spite of what
was (not) occurring in the video. Lastly, we note that similar
green values were annotated inconsistently over time. In par-
ticular, there was a significant difference in average annotation
value per annotator between different time intervals where the
green intensity was actually at a constant 0.5 value (see Figure
2a).

This last observation implies that even for this relatively sim-
ple annotation task, it is difficult for annotators to accurately
capture the trends while preserving self-consistency over time.
Given prior evidence that humans are better at ranking than ra-

ting (Yannakakis and Hallaml [201 1;|Metallinou and Narayanan),
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2013} [Yannakakis and Martinezl, [2015) and our own observa-
tions from this study, it is reasonable to assume that in continu-
ous real-time annotation, experts are more focused and perhaps
even better at faithfully capturing trends and less able to accu-
rately assess the true value at any point in time. We present a
procedure for correcting these rating inconsistencies while pre-
serving the more precise trend annotations.

3. Fused Annotation Warping for Ground Truth Estima-

tion

We propose a method for warping fused annotations to es-
tablish a ground truth signal that has been corrected for vari-
ous global inconsistencies, artifacts, and errors introduced dur-
ing the real-time continuous human annotation process. The
method leverages a recurring observation that annotators more
successfully capture trends and less accurately represent ex-
act ratings (Yannakakis and Hallam| 2011; Metallinou and
Narayanan, 2013 |Yannakakis and Martinez, 2015). In our ap-
proach, additional information must be collected from annota-
tors after the continuous annotation task. We leverage the struc-
ture of the fused annotations to identify segments of time in the
video that can be treated as congruent units and thus reduce
the amount of necessary additional information. Further signif-
icant reductions to the required supplementary information are
discussed in the results section.

Our method is summarized as a sequence of steps shown in
Figure [3] The first step fuses the raw annotations together to
form a single time series. In this paper, this step simply time-
aligns and averages all annotations to reduce systemic noise and

limit the influence of random annotation artifacts. Total varia-
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Fig. 2. Annotations of green channel values alongside the true value in two separate annotation tasks.
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Fig. 3. Proposed pipeline for ground truth correction given continuous human annotations.

tion (TV) denoising is then used to approximate the fused sig-
nal as a piecewise-constant step function. Constant intervals
are thereafter extracted from the denoised signal corresponding
to time spans where annotators generally agree that the target
construct does not noticeably change. Additional rank informa-
tion is then procured from annotators to re-evaluate the proper
sorting of the these time intervals with respect to the target con-
struct. We collect comparison results among unique triplets of
these constant intervals and employ an ordinal embedding tech-
nique to re-rank them. Finally, the average signal is warped
piecewise-linearly so the corresponding constant intervals align

with the embedding. These steps and their assumptions are de-

scribed in detail in the corresponding sections below.

3.1. Lag Compensation and Averaging (Annotation Fusion)

The first step involves estimating an appropriate time shift
for each annotation signal to align them with the video and
compensate for lag due to human reaction times. Several meth-
ods have been proposed for this (Miiller, 2007; [Zhou and Torre],
[2009}, [Andrew et al., 2013} Nicolaou et al.| 2014} [Mariooryad

[and Busso}, 2015} [Ringeval et al} 2015} [Trigeorgis et al., 2016)

and in principle any choice works for this step. We use a

simple per-annotator time shift (EvalDep) proposed by

looryad and Busso| (2015). This method requires some feature

sequences to be extracted from the video for alignment, so we



provide the green value and its forward difference per frame.
The average annotation lag is estimated at 1.6 seconds across
annotators. After shifting each annotation by its own lag es-
timate, we truncate the trailing frames so all annotations are
equal length and then average them in time. Note that the lag
compensation is not strictly necessary but yields better final re-
sults. Figure fa] shows the time-corrected average annotation

signal for one of the annotation tasks.

3.2. Total Variation Denoising

Total variation denoising has been successfully used to re-
move salt and pepper noise from images while simultaneously
preserving signal edges (Rudin et al.l [1992). In our context,
we want to identify the set of nearly constant regions of the
average annotation signal corresponding to a lack of notice-
able change in the target construct. TV denoising is preferable
to other smoothing processes both because it approximates the
function as a piecewise-constant step function as is desired, and
also because it better preserves the structure of the signal.

We use the TFOCS MATLAB library (Becker et al.,[201 1)) to
find a new sequence y, that approximates a given sequence x;

and minimizes:

min | Z llxe = yillz, + A Z et = yelle |
7 t

The parameter A controls the influence of the temporal varia-
tion term and degree to which y, is approximately piecewise-
constant. In general this parameter needs to be tuned to pro-
duce a desirable sequence. For this study, we hand-tune A and
settle on a value of 0.05. In principle, this parameter can be au-

tomatically selected based on other criteria and heuristics, but
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we leave this endeavor for future work. Figure [4b] shows an

example TV-denoised signal.

3.3. Constant Interval Extraction

A simple heuristic method is used to extract nearly constant
intervals from the TV-denoised signal. These time intervals be-
come the targets for re-ranking in the next step when an ordinal
embedding is applied. In this step, a scan of the TV-denoised
signal is performed and the smallest set of (largest) intervals
is found where each interval satisfies two criteria: (1) the total
height does not exceed threshold #, and (2) the frame length
of the interval is at least 7 frames. Figure [4b] shows example
extracted approximately constant intervals for one of the anno-
tation tasks.

For our experiment, we select 7 = 0.005 and T = 18 frames
(for 30Hz videos). The height threshold is chosen to be very
small relative to the size of the annotation scale so only very flat
regions are considered. Because TV denoising does well at ap-
proximating the signal as a piecewise-constant function, we find
this step in the overall procedure is not very sensitive to 4. The
T value is selected to match the duration of the fastest change in
the objective truth. In practice, this parameter could be approx-
imated from the average annotation signal or tuned manually,
but should be set no smaller than the equivalent of 0.25 sec-
onds, which is roughly the average human reaction time. In
the future, we hope to obviate these parameters to make this

approach more scalable and robust.

3.4. Triplet Comparisons

In this step during an actual experiment, annotators are asked

to view three extracted video segments corresponding to each
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Fig. 4. Results at intermediate stages of the proposed method pipeline for Task A.

unique triplet of intervals. One video segment serves as a ref-
erence and the other two as test candidates and the annotator is
instructed to select which of the two candidate video segments
is most similar to the reference. For the purpose of assessing
the robustness of this approach to missing and conflicting com-
parison information, we simulate the comparison results using
the objective truth as an oracle. Further analysis of these effects
are explored in the results section.

3.5. Ordinal Embedding

Ordinal embedding problems attempt to learn a (typically
lower dimension) embedding that preserves a similarity rela-
tionship between subsets of data points. Given a set of inputs
Z = {z1,...,z,} with each z € R™ and a set of similarity rela-
tions on 4-tuples from Z of the form s(z;,z;) < s(zx,z;) where
{i, j,k, 1} is a 4-subset of {1,2,...,n}, the goal is to find a set

X = {x1, ..., x,} with each x € R? such that:

lx; = x;ll < llxx — xill &= s(zi,z;) < $(zk, 20)

for some norm on X. For our application, we are interested in
the case i = k where we have ordinal comparisons in the form

of triplets (i.e. sample i is more similar to sample j than k). One

reason to prefer this simplification of the general problem is that
it reduces the cardinality of the set of all possible comparisons
given Z and thus the amount of additional information we need.

A further reduction would be possible if we consider rela-

tionships of the form:
llxill < llxell <= llzill < llzll

for unique index pairs {i, k}. This setup supposes that it is pos-
sible to directly assign a value to each sample z with respect to
the target construct for the purpose of comparing two samples,
but this may not always be possible. In cases where multiple
conflicting or ambiguous criteria exist, as in the annotation of
smile strength (Gupta et al., [2016), such a scale may not exist
or be too unintuitive for human annotators. So, for generality
of this procedure, we choose the triplet comparison approach.
With triplets, the total number of comparisons that can be
made when |Z| =nisn- (";1) which scales O(n?). Fortunately,
there is considerable redundancy in the comparison informa-
tion and only a small fraction is necessary to find an embedding
close to the optimal embedding. Prediction error bounds have

already been derived for a noisy formulation of this triplet em-



bedding problem (Jain et al.,[2016), nonetheless we expect that
the number of comparisons must scale like O(dnlog(n)) (d = 1
in our experiment).

In our method, ordinal embedding is used to reorder the
constant intervals to make them more self-consistent and rank-
aligned with the objective truth. Several triplet ordinal embed-
ding solvers have been proposed (Agarwal et al., |2007; Tamuz
et al.,|2011; |Van Der Maaten and Weinberger, 2012; | Amid and
Ukkonen, |2015)). We employ the t-stochastic triplet embedding
(t-STE) approach (Van Der Maaten and Weinberger, 2012) be-
cause, as the authors highlight, it aggregates similar points and
repels dissimilar ones. We also favor this approach because it
prefers the simpler explanation that two points in the embed-
ding are identical when no evidence suggests otherwise (Oc-
cam’s Razor principle). Figure [6] shows the embedding results
for the extracted constant intervals that have been rescaled to
the proper [0, 1] range and computed using a complete set of
triplet comparisons from the oracle. Note that the embedding
only preserves the relative similarity relationships, so the em-
bedding scale is expected to be off by a (unknown) monotonic

transformation of the objective truth’s scale.

3.6. Spatial Warping

In the final step, the fused annotation is spatially warped us-
ing the ordinal embedding results with the extracted constant in-
tervals to rectify inconsistencies. First, within the time frame of
each interval the annotation is corrected so its average over the
interval is equal to the corresponding embedding value. Then,
the annotation between two intervals is linearly scaled to align

with the warped annotation at the neighboring intervals. We
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select a linear inter-interval warping function because it avoids
distorting the signal. A formal definition is provided by Equa-
tions [T] and [2] in Figure [5] and Figure [6] shows the results after

applying this warping technique.

4. Results

Table [1| shows various agreement measures for different an-
notation fusion approaches and the objective truth in our per-

ception experiment.

Table 1. Agreement measures for baseline and proposed warped fused
annotation approaches

Task  Signal Type Pearson Spearman Kendall’s NMI
Tau
Simple Average  0.775 0.795 0.636 0.302
Warped Average 0.8117  0.738 0.584 0.307
Distort™ 0.809 0.834 0.676 0.793
Warped Distort ~ 0.8887  0.839 0.695 0.794
EvalDep™ Average 0.906 0.946 0.830 0.484
Warped EvalDep  0.967"  0.939 0.835 0.562
Simple Average  0.950 0.948 0.804 0.772
Warped Average 0.964"  0.960 0.828 0.859
Distort* 0.967 0.966 0.848 0.955
Warped Distort ~ 0.960 0.962 0.842 0.957
EvalDep™ Average 0.969 0.969 0.855 0.774
Warped EvalDep 0.988"  0.987 0.906 0.862

All warped results use a complete set of ordinal comparisons from the oracle.
NMI = normalized mutual information.
T - significant improvement (p < 0.003, using a Fisher z-transform) of the
warped methods over the respective signal
* - method from|Gupta et al.|(2016)

** - method from Mariooryad and Busso| (2015)

Three baseline annotation fusions are shown, one is a sim-
ple average of the expert annotations, one is the maximum
likelihood estimation from a per-annotator distortion model
(Gupta et al.l 2016), and the last is a time-aligned average
using evaluator-dependent time shifts (Mariooryad and Busso),
2015)). Our rank-based warping method is applied to each base-
line using a full set of triplet comparisons from the oracle. In
all cases except for one, the warping method achieves signifi-

cantly better results (p < 0.005) when agreement is measured
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Fig. 6. Plot of the objective truth signal, time-shifted average annotation signal, warped signal, and the 1-D embedding for extracted constant intervals for
Task A. The spatially warped signal better approximates the objective truth and also achieves greater self-consistency over the entire annotation duration.

using Pearson correlation or normalized mutual information.
In the one outlier case, the “distort” model already approxi-
mates the objective truth extremely well because the true signal
is very smooth. In this case, the proposed warping method does
not diminish the correlation considerably. Although it would
seem that rank-based correlation metrics should show a sub-
stantial improvement, Spearman and Kendal’s Tau correlations
slightly decrease in some cases. This is primarily due to rank
disagreements over the warped constant intervals, rather than
disagreements at a large scale due to the ordinal embedding.

The improved self-consistency over time of the warped signal

combined with the general improvement in Pearson correlation
demonstrate that the warped signal resulting from the proposed

method is more suitable for use as a ground truth.

Lastly, we briefly address the robustness of the proposed
warping method to incomplete triplet comparisons. Even for
modest numbers of constant intervals, the number of triplets
required for a complete set grows cubicly. Due to the large
amount of redundancy in the triplet comparisons, only a small
fraction is necessary for the warping method to approximate
the objective truth well. Figure [/| shows a plot of the perfor-

mance of this spatial warping approach for both incomplete
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triplet comparisons and partially adversarial comparisons. In
our first green value perception experiment (Task A), there are
40 extracted intervals and thus 29,640 possible comparisons.
Assuming a uniform five percent triplet comparison error rate,
significant improvement over the best tested baseline method
is achieved with only two percent, or about 600, randomly se-

lected triplet comparisons.

5. Future Work

There are several compelling research directions for expand-
ing on this work which we aim to address in future papers. The
total variation denoising procedure requires careful selection
of an unintuitive tunable constant to achieve desirable results.
Consideration of other problem constraints, such as the quota
of annotation resources available or the required accuracy on
predictions from the resulting ground truth, could be used to
find a sensible value for this parameter. The subsequent con-
stant interval extraction step also has two parameters that could
be chosen automatically from the data given some additional

heuristics or constraints. Further analysis of this method’s abil-
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ity to produce accurate ground truth estimates for more com-
plex continuous annotation tasks, like 2-D dimensional affect,
is another exciting avenue. Larger reductions in the number of
required triplet comparisons may also be possible using adap-

tive sparse sampling techniques and stochastic transitivity.

6. Conclusion

In this paper we propose a novel method for extending con-
tinuous real-time human annotation fusion approaches to gen-
erate a more accurate ground truth. We leverage the natural
ability of annotators to provide accurate similarity comparisons
and propose a procedure for warping the fused annotation to
better align with the target construct. We test our approach in
a mechanically simple but perceptually difficult annotation ex-
periment where an objective truth is known and show that our
approach yields a signal significantly more correlated with the
objective truth even with the presence of several annotation ar-
tifacts. We hope this method finds utility as a means for estab-
lishing a more accurate ground truth in hidden state problems

where no objective truth is available a priori.
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